How to Set a Manufacturing Line for Fingerprint Faking

Vashek Matyáš (credits to Agáta Kružíková & CRoCS) <u>matyas@mail.muni.cz</u>
CRoCS, Faculty of Informatics, Masaryk University

Agenda

- Lessons learned from an earlier project
- Fingerprint as the authentication method of choice
- Our fingerprint forgery workbench
- Results of our effort
- Limitations and resources

Back then... (in 2018-2020) in a project...

- Innovation and adaptation of authentication technologies for secure digital environment
- Sponsor: Technology Agency of Czech Republic
- Cooperation between:
 - Centre for Research and Applied Cryptography
 - Interdisciplinary Research Team on Internet and Society
 - MONET+/AHEAD iTec

Investigated Authentication Methods

- A. Numeric PIN code (6 digits)
- B. Fingerprint
- C. Hardware NFC token
- D. Payment card with smartcard reader

Study Procedure

Informed consent

- Study description
- Demographic questionnaire

- Fulfilment of the tasks
- Questionnaires and interviews based on the fulfilled tasks
- Recordings of the screens for time measurement

Scenario Description

- IDport application of digital identity recommended by participant bank
- 2. IDport app activation
- 3. Login to m-banking
- 4. Payment of a bill

(Pre)testing

- Iterative process ("Nach der Schlacht ist jeder General")
- 4 rounds
 - Each round just with few participants (up to ten)
 - Different authentication methods
 - Enhancements in the instructions and animations

Sample Description & Data Collection

- Smartphone users (Android OS)
- Adults (N=250)
 - Age: 26-54, median = 38
 - Representative sample from professional agency
 - 54% women, 69% full time job
- *The Ageing (N=250)*
 - Age: 55+, median = 61
 - Convenient sample, data collection organised by us
 - No education or work experience in IT
 - 61% women, 51% full-time job, 41% on pension

Usability and Security Perception

- RQ1: How do users evaluate selected authentication methods according to their perceived usability and security?
- Vote
 - 1. What method would be perceived as the best one for you?
 - What method was perceived as the best one?
 - 3. Did participants perceive any differences for four tested methods?
 - 4. Did participants perceive all methods rather positive or rather negative?
- A. Numeric PIN code (6 digits)
- B. Fingerprint
- C. Hardware NFC token
- D. Payment card with smartcard reader

Method Evaluation

Method evaluation: We show mean scores and their confidence interval (with +/-1 standard deviation) for perceived usability and perceived security of each authentication method (1-best, 7-worst)

Usability and Security Predictors

- Possible predictors
 - Prior experience in banking: PIN and fingerprint
 - Smartphone usage self-efficacy
 - Smartphone security behaviour self-developed
 - Knowledge of secure smartphone behaviour
- RQ2: What demographic characteristics and other factors are associated with the evaluation of these authentication methods?
- Vote
 - What factors predict perceived usability?
 - What factors predict perceived security?

Methods Perceptions

- Methods:
 - A. Numeric PIN code (6 digits)
 - B. Fingerprint
 - C. Hardware NFC token
 - D. Payment card with smartcard reader
- All methods perceived as rather positive
 - Fingerprint was rated as best in usability and security
- No uniformed predictor for usability and security perception across all tested methods

Time as Predictor: End-Users

 Satisfaction with the time spent on the authentication task is more important for a positive perception of the authentication methods than the task completion time

Limitations

- Android users can be more security and technology aware
- Convenience sampling not representative
- Previous experience only for PIN and fingerprint
- Hypothetical scenario not real and no long-term use
- Two separate apps activation and usage

Agenda

- Lessons learned from an earlier project
- Fingerprint as the authentication method of choice
- Our fingerprint forgery workbench
- Results of our effort
- Limitations and resources

Biometrics have their issues...

- Biometrics are not secret
- Unknowingly sharing biometric data increases security risks
 - For example, challenges on social media can make it easier for attackers to obtain data
- Biometric sensors operate with a certain degree of error—they are never 100% reliable

Fingerprint forgery around for ages...

Tsutomu Matsumoto 2002 – "gummybear attack"

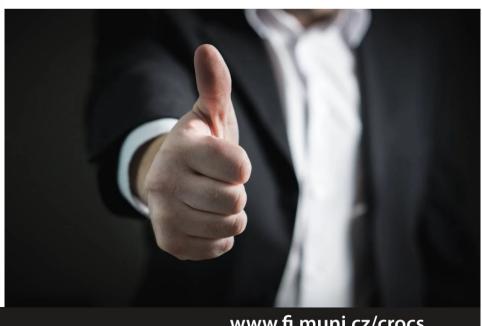
Attacks with latent fingerprints utilized both legally

and illegally

And more...

Fingerprint forgery from a photo

Other studies*


Photo of latent fingerprints

*E.g., Goicoechea-Telleria, I., Garcia-Peral, A., Husseis, A., & Sanchez-Reillo, R. (2018). Presentation Attack Detection Evaluation on Mobile Devices: Simplest Approach for Capturing and Lifting a Latent Fingerprint. 2018 International Carnahan Conference on Security Technology (ICCST).

Our study

Photo of a finger

Photo from the internet: https://www.pexels.com/photo/close-up-of-humanhand-327533/

www.fi.muni.cz/crocs

Photo processing

Fingerprint forgery simulation seminar

Example photo from a thumb (left) and result of our software processing (right)

Source: https://www.pexels.com/photo/close-up-of-human-hand-327533/

Agenda

- Lessons learned from an earlier project
- Fingerprint as the authentication method of choice
- Our fingerprint forgery workbench
- Results of our effort
- Limitations and resources

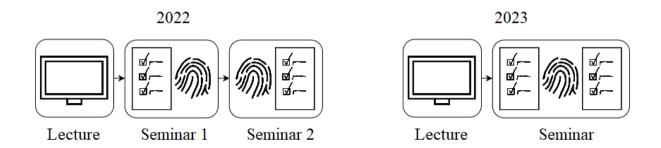
Forgery process

Smartphone fingerprint readers

- 1. Unlocking with counterfeit
- 2. Registering a counterfeit as a new finger

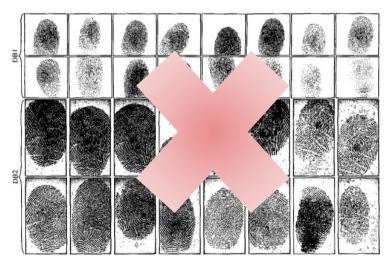
Counterfeit processing

- Fingerprints scanned with external fingerprint reader (Futronic FS80H)
- Processed with NBIS (NIST Biometric Image Software) packages
 - Match score computed with BOZORTH3 algorithm



Sample

- Students of introductory IT security course
 - Spring 2022: 221 participants
 - Spring 2023: 149 participants
 - Spring 2024: only informal verification by 146 respondents


Study design

- Lecture
- Seminar 1
 - Questionnaire 1 → Theory → Creation an counterfeit from the photo → Applying glue into the mold
- Seminar 2
 - Peeling off the glue/silicone → Counterfeit processing →
 Questionnaire 2

Ethics

- No biometric data collected!
- Collected only self-reported data
 - E.g., opinions, experiences
- Participation purely voluntary
 - No advantages or disadvantages

Source: Sayeed, Md Shohel & Nasir, Ilham & Ong, Thian Song. (2016). An Efficient Multimodal Biometric Authentication Integrating Fingerprint and Face Features. American Journal of Applied Sciences. 13. 1221-1227. 10.3844/ajassp.2016.1221.1227

Agenda

- Lessons learned from an earlier project
- Fingerprint as the authentication method of choice
- Our fingerprint forgery workbench
- Results of our effort
- Limitations and resources

Results: counterfeit success

- NBIS
 - $-19\% \rightarrow 76\%$ of participants successful (58% in 2024)
- Unlocking smartphone
 - $-1 (in 2022) \rightarrow 4 (2023) \rightarrow 7 (2024)$
- Registering counterfeit into a smartphone
 - 26% → 11% → 16% of participants successful

Results: security perception

- Fingerprint authentication perceived as less secure after forgery simulation in the first run, but no change was observed in the second run
- Methods perception from the least to the most secure (measured only in the first run):

Swipe pattern
Face
recognition

Fingerprint
PIN

Software token
Password
Hardware token

Results: perceived susceptibility

- The subjective perception of the risk of fingerprint attack
- Higher before the forgery simulation than after

Source: https://slate.com/technology/2019/08/how-criminals-might-use-stolen-fingerprints.html

Results: forgery perception

- Fingerprint forgery perceived as
 - easier to learn
 - harder to perform (only in the first run)
 - attacker level as lower (only in the first run)
 - after the simulation than before

Results: fingerprint authentication usage

- After simulation, willingness to use fingerprint authentication less often for:
 - Unlocking smartphone (only in the first run)
 - Login into mobile banking
 - Confirmation of transaction in mobile banking

Agenda

- Lessons learned from an earlier project
- Fingerprint as the authentication method of choice
- Our fingerprint forgery workbench
- Results of our effort
- Limitations and resources

Limitations

- Attacker and victim is the same person
 - Because of the ethics
 - But still very good simulation of real-life scenario
- Issues with photo quality
- Issues with size estimation in the first run

Resources

- Kruzikova, A., Di Campi, A., Cerny, T., Matyas, V. No Thumbs Up in Pictures! Experimental Fingerprint Forgery for Inexperienced Impostors. EEE ACCESS, 2024, vol. 12, No 131297.
- Kruzikova, A., Knapova, L., Smahel, D., Dedkova, L., Matyas, V.
 Usable and secure? User perception of four authentication methods for mobile banking, *Computers & Security*, Volume 115, 2022.
- Kružíková, A., Mužík, M. Knapová, L., Dědková, L., Šmahel, D., Matyáš, V. Two-Factor Authentication Time: How Time-Efficiency and Time-Satisfaction Are Associated with Perceived Security and Satisfaction., Computers and Security, Volume 138, 2024.
- Videos: (1) promotional/warning (YouTube) & (2) training the tutors

Summary

- Fingerprint first perceived as the most usable and secure method (of the four we tested).
- Students can make a reasonable counterfeit in ~ 60 mins.

 Mixed results about fingerprint security perception after forgery experience.

Thank you for your attention!

Article:

Video:

